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Financial motivation

I Financial context: (Si )i=0,1,2 an asset price s.t. S0 = 1,

S1 = X and S2 = Y .

I All European options prices, with maturities 1 and 2, are

given.

⇒ marginals µ, ν at time 1 and 2 are given.

I No-arbitrage condition ⇒ (Si )i=0,1,2 is a martingale.

We introduce the set:

M(µ, ν) := {P : X µ,Y ν,EP [Y |X ] = X}.

M(µ, ν) is a convex set.
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Set M(µ, ν)

I [Strassen(1965)] Theorem: M(µ, ν) is not empty if and only if

µ � ν in the sense of convex ordering.

I Convex ordering: µ � ν iff∫
fdµ ≤

∫
fdν for all convex functions f

In particular µ and ν have the same mean:∫
xµ(dx) =

∫
yν(dy)
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Primal problem

I Sup-problem:

P(µ, ν, f ) = sup
Q∈M(µ,ν)

EQ [f (X ,Y )].

I Inf-problem:

P(µ, ν, f ) = inf
Q∈M(µ,ν)

EQ [f (X ,Y )].
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Dual problem

Dual formulation of the inf and sup-problems

I Super-hedging value

D(µ, ν, f ) = inf
(ϕ,ψ,h)∈H

∫
ϕ(x)µ(dx) +

∫
ψ(y)µ(dy),

I Sub-hedging value

D(µ, ν, f ) = sup
(ϕ,ψ,h)∈H

∫
ϕ(x)µ(dx) +

∫
ψ(y)µ(dy),

with

H =
{

(ϕ,ψ, h) s.t. ϕ(x) + ψ(y) + h(x)(y − x) ≥ f (x , y)
}
,

H =
{

(ϕ,ψ, h) s.t. ϕ(x) + ψ(y) + h(x)(y − x) ≤ f (x , y)
}
.
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Financial interpretation of the dual problem

The super-hedging value D(µ, ν, f ) is the cost of the cheapest

super-hedging strategy of the derivative f (X ,Y ) by

I Static trading on the European options with maturities 1 and

2, represented by (ϕ,ψ)

I Dynamic trading on the underlying asset S , represented by h

Cheapest super-hedging because:

I Cheapest initial cost: inf
∫
ϕ(x)µ(dx) +

∫
ψ(y)µ(dy)

I Super-hedging: ϕ(x) + ψ(y) + h(x)(y − x) ≥ f (x , y)
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[Beiglboeck(2013)]

No duality gap:

If f is upper semi-continuous with linear growth, then there is no

duality gap, i.e.

sup
Q∈M(µ,ν)

EQ [f (X ,Y )] = inf
(ϕ,ψ,h)∈H

µ(ϕ) + ν(ψ)

Moreover, the supremum is attained, i.e. there exists a maximizing

martingale measure.

∃P?, sup
Q∈M(µ,ν)

EQ [f (X ,Y )] = EP? [f (X ,Y )]
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Hypotheses.

1. µ, ν have positive densities pµ, pν such that µ � ν and∫∞
0 xpµ(x) =

∫∞
0 xpν(x) = 1.

2. Denote δF = Fν − Fµ. Suppose that δF has a SINGLE

LOCAL MAXIMIZER m.

Similarly: Gµ(x) =
∫ x
0 yµ(dy),Gν(x) =

∫ x
0 yν(dy), δG = Gν − Gµ.
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[Hobson and Klimmek(2013)]

I Derive explicit expressions for the coupling giving a model-free

sub-replicating price of a at-the-money forward start straddle

of type II C 1
II :

C 1
II (x , y) = |y − x | , ∀x , y > 0,

I The optimal martingale transport is concentrated on a three

point transition graph {p(x), x , q(x)} where p and q are two

decreasing functions.

P?(Y ∈ {p(X ),X , q(X )}) = 1
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[Beiglböck and Juillet(2012)]

I Introduce the concept of left-monotone and right-monotone

transference plans and prove its existence and uniqueness.
I Show that these transference plan realise the optimum in the

martingale optimal transport problem, for a certain class of

payoffs:
I f (x , y) = h(x − y) where h is a differentiable function whose

derivative is strictly convex.

I f (x , y) = Ψ(x)φ(y) where Ψ is a non-negative decreasing

function and φ a non-negative strictly concave function.

I Existence result only: no explicit characterization of the

optimal measure.
Campi, Martini Investigating the extremal martingale measures with pre-specified marginals



Outline
Martingale optimal transport problem

Examples of optimal martingale transports
Extremal points: motivation

Douglas theorem and the WEP
Characterizing the support of extremal points (countable case)

[Henry-Labordère and Touzi(2013)]

I Extend the results of [Beiglböck and Juillet(2012)] to a wider

set of payoffs:

fxyy > 0

This set contains the coupling treated in

[Beiglböck and Juillet(2012)] (f (x , y) = h(x − y) and

f (x , y) = Ψ(x)φ(y)).

I Give explicit construction of the optimal measure, which are

of left-monotone transference plan type.
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Definition

Basic left-monotone transference plan (x?, Ld , Lu), where x? ∈ R∗+
and Ld , Lu are positive continuous functions on ]0,∞[:

i) Ld(x) = Lu(x) = x , for x ≤ x?;

ii) Ld(x) < x < Lu(x), for x > x?;

iii) on the interval ]x?,∞[, Ld is decreasing, Lu is increasing;

iv) Lµ = ν where the transition kernel L is defined by

L(x , dy) = δx1x≤x? + (q(x)δLu(x) + (1− q(x))δLd (x))1x>x?

where qL(x) := x−Ld (x)
Lu(x)−Ld (x) .

Campi, Martini Investigating the extremal martingale measures with pre-specified marginals



Outline
Martingale optimal transport problem

Examples of optimal martingale transports
Extremal points: motivation

Douglas theorem and the WEP
Characterizing the support of extremal points (countable case)

Basic left-monotone transference plan (x?, Ld , Lu)
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Basic right monotone transference plan

Basic right-monotone transference plan (x?,Rd ,Ru), where

x? ∈ R∗+ and Rd ,Ru are positive continuous functions on ]0,∞[:

i) Rd(x) = Ru(x) = x , for x ≥ x?;

ii) Rd(x) < x < Ru(x), for x < x?;

iii) On the interval ]0, x?[, Rd is increasing, Ru is decreasing,

iv) Lµ = ν where the transition kernel L is defined by

L(x , dy) = δx1x≤x? + (q(x)δRu(x) + (1− q(x))δRd (x))1x>x?

where qL(x) := x−Rd (x)
Ru(x)−Rd (x)

.
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[Hobson and Klimmek(2013)] transference plan QHK (µ, ν)

Type II forward start option: C (X ,Y ) = |Y − X |.
[Hobson and Klimmek(2013)] prove that

inf
Q∈M(µ,ν)

EQ [|Y − X |] = EQHK (µ,ν)
[
|Y − X |

]
I The measure QHK (µ, ν) is an extremal point of M(µ, ν) (by

considering the support and the construction of QHK (µ, ν)).
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F -Increasing transference plan (Laachir I., 2014)

A pair of functions (l ,m) is a F -increasing transference plan if the

following conditions are fulfilled

1. l and m are increasing.

2. l(x) < x < m(x) for all x > 0.

3. l(0) = 0, lim∞ l(x) = z?F and m(0) = z?F (zero of δF ).

4. Lµ = ν, where the transition kernel L is defined by

L(x , dy) = q(x)δl(x) + (1− q(x))δm(x) where

qL(x) := m(x)−x
m(x)−l(x) .

Rmk: z?F zero of the function δF := Fν − Fµ.
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Existence

Proposition

The F -increasing transference (l ,m) exists and it is unique.

For every x > 0, (l(x),m(x)) is the unique solution of the system

of equations

Fν(m(x)) + Fν(l(x))− Fν(z?F ) = Fµ(x)

Gν(m(x)) + Gν(l(x))− Gν(z?F ) = Gµ(x)
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Illustration
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Extremal Points

I Very few explicit transference plans are known

I They are all extremal points of M(µ, ν) (consider the support

for 2 points plans) and share a common structure

I The convex setM(µ, ν) is weakly compact and metrizable. By

the Choquet representation theorem, any Q ∈ M(µ, ν)

satisfies

Q =

∫
Qαdµ(α)

for some probability measure on the extremal points Qα.

(e.g.: the Black-Scholes case)
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Douglas and the WEP

Theorem

Q ∈ M(µ, ν) is extremal if and only if the set{
ϕ(x)− ψ(y) + h(x)(y − x)\(ϕ,ψ, h) ∈ L1(µ)× L1(ν)× L1(xµ)

}
is dense in L1(Q).

Definition (WEP)

Q ∈ M(µ, ν) has the Weak Exact PRP iff

∀f ∈ L1(Q), ∃(ϕ,ψ, h) s.t. f (x , y) = ϕ(x)−ψ(y)+h(x)(y−x) a.s.
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Some consequences of Douglas theorem

Proposition

Q is extremal in M(µ, ν) iff for any

Q ′ ∈ M(µ, ν) Q ′ << Q =⇒ Q ′ = Q.
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WEP and the Poisson Equation, 1

WEP is certainly a very strong property. As an illustration,

consider the case where for every x , x ∈ suppQ(x , .). If f is such

that f (x , x) = 0, y setting x = y we get that φ = ψ. Then:

Proposition

I ψ solves the Poisson Equation (I − Q(x , .))ψ = v where

v(x) = Q(x , .)f (x .)(x)

I the potential kernel G (x , .) applied to v is finite, and

ψ(x) = G (x , .)v(x) + Q(x , .)∞ψ(x) where Q(x , .)∞ψ is a

Q(x , .) invariant function.
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WEP and the Poisson Equation, 2

In case Q(x , .) ∈ M(µ, ν) has 3 point support with x ∈ Q(x , .), let

Q∗(x , .) the CRR kernel supported on Q(x ,R+\{x}).

Proposition

If for any bounded f with f (x , x) = 0, the PE associated to Q∗

has a solution with linear growth, then Q has the WEP.

Let ψ such that (I − Q∗)ψ = Q∗f (x , .)(x). Since Q∗(x , .) has 2

points support, f (x , y) + ψ(y)− ψ(x) can be replicated (Q∗)

perfectly (CRR) by b(x) + h(x)(y − x). Now b = 0 by taking

expectations, so that the WEP holds on the support of Q∗, and

therefore everywhere. Application: Hobson Klimmek.
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Basic facts

Let S(x) the support of Q(x , .).Assume the WEP and

∀x , x ∈ S(x).

Lemma

On S(x), y → ψ(y) + f (x , y) is affine. In particular ψS(x) is fully

determined by its values at any 2 points.

Corollary

For distincts x , x ′, ]S(x) ∩ S(x ′) ≤ 2.

NB: if all the sets S(x) are disjoints, then M(µ, ν) is a singleton.

The point of interest is the combinatorics of the sets ]S(x) ∩ S(x ′)
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Denny’s (non martingale) characterization

Theorem

Q is extremal in Π(µ, ν) iff

I supp(Q) = {(x , f (x)} ∪ {(g(y), f (y)} for 2 functions f , g

I for any n, (g .f )n has no fixed point

Remark: Dom(f) or Dom(g) can be empty.
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Denny’s (and Letac) cycles

I The main idea in Denny’s theorem is that it is possible to

perturbate Q along a cycle.

I What about the martingale property? It will not be preserved

by such a perturbation.
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A martingale perturbation

Assume in the 3 points support case that ]S(x) ∩ S(x ′) = 2,

]S(x) ∩ S(x ′′) = 2, ]S(x ′) ∩ S(x ′) = 1.

Then we can build a martingale perturbation.
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A candidate cycle like property

Consider we start from a given x ∈ X . Set:

1. Ψ1 = S(x), T1 = {x}

2. By recurrence, let Tn+1 = {y /∈ Tn / S(y) ∩Ψn 6= ∅} and set

Ψn+1 = Ψn ∪Tn+1 S(y), and for z ∈ Tn+1,

Ψ∗n+1(z) = Ψn ∪Tn+1\z S(y) for n ≥ 1.

Our sufficient condition read, in step 2 above:

∀z ∈ Tn+1, ](S(z) ∩Ψ∗n+1(z)) ≤ 2

A martingale cycle would be z ∈ Tn+1, ](S(z) ∩Ψ∗n+1(z)) ≥ 3.
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Conclusion

I WEP and sequential WEP from Douglas theorem

I Solving the WEP via the Poisson equation

I A candidate martingale cycle property

I Many questions remain!

Campi, Martini Investigating the extremal martingale measures with pre-specified marginals



Outline
Martingale optimal transport problem

Examples of optimal martingale transports
Extremal points: motivation

Douglas theorem and the WEP
Characterizing the support of extremal points (countable case)

Thank you for your attention !
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