Investigating the extremal martingale measures with pre-specified marginals

Luciano Campi¹, Claude Martini²

¹ London School of Economics, Department of Statistics, United Kingdom.
² Zeliade Systems, France. Partially funded by the ANR ISOTACE

Workshop on Stochastic and Quantitative Finance, Imperial College, November 2014

イロト イポト イヨト イヨト

Outline Martingale optimal transport problem Examples of optimal martingale transports Extremal points: motivation

Extremal points: motivation Douglas theorem and the WEP Characterizing the support of extremal points (countable case)

Martingale optimal transport problem

Examples of optimal martingale transports

Extremal points: motivation

Douglas theorem and the WEP

Characterizing the support of extremal points (countable case)

イロン イヨン イヨン イヨン

Martingale optimal transport problem

Examples of optimal martingale transports

Extremal points: motivation

Douglas theorem and the WEP

Characterizing the support of extremal points (countable case)

Financial motivation

- Financial context: $(S_i)_{i=0,1,2}$ an asset price s.t. $S_0 = 1$, $S_1 = X$ and $S_2 = Y$.
- All European options prices, with maturities 1 and 2, are given.

 \Rightarrow marginals μ,ν at time 1 and 2 are given.

• No-arbitrage condition $\Rightarrow (S_i)_{i=0,1,2}$ is a martingale.

We introduce the set:

$$\mathcal{M}(\mu,\nu) := \{ \mathbb{P} : X \ \mu, Y \ \nu, \mathbb{E}^{\mathbb{P}}[Y|X] = X \}.$$

 $\mathcal{M}(\mu, \nu)$ is a convex set.

Set $\mathcal{M}(\mu, \nu)$

• [Strassen(1965)] Theorem: $\mathcal{M}(\mu, \nu)$ is not empty if and only if

 $\mu \leq \nu$ in the sense of convex ordering.

• Convex ordering: $\mu \preceq \nu$ iff

$$\int \mathit{f} d\mu \leq \int \mathit{f} d
u$$
 for all convex functions f

In particular μ and ν have the same mean:

$$\int x\mu(dx) = \int y\nu(dy)$$

Primal problem

$$\overline{P}(\mu,\nu,f) = \sup_{Q \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{Q}[f(X,Y)].$$

Inf-problem:

$$\underline{P}(\mu,\nu,f) = \inf_{Q \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{Q}[f(X,Y)].$$

イロン イヨン イヨン イヨン

æ

Dual problem

Dual formulation of the inf and sup-problems

Super-hedging value

$$\overline{D}(\mu,
u,f) = \inf_{(arphi, h)\in\overline{\mathcal{H}}} \int arphi(x) \mu(dx) + \int \psi(y) \mu(dy),$$

Sub-hedging value

$$\underline{D}(\mu, \nu, f) = \sup_{(\varphi, \psi, h) \in \underline{\mathcal{H}}} \int \varphi(x) \mu(dx) + \int \psi(y) \mu(dy),$$

with

$$\begin{aligned} \overline{\mathcal{H}} &= \left\{ (\varphi, \psi, h) \text{ s.t. } \varphi(x) + \psi(y) + h(x)(y - x) \ge f(x, y) \right\}, \\ \underline{\mathcal{H}} &= \left\{ (\varphi, \psi, h) \text{ s.t. } \varphi(x) + \psi(y) + h(x)(y - x) \le f(x, y) \right\}. \end{aligned}$$

Financial interpretation of the dual problem

The super-hedging value $\overline{D}(\mu, \nu, f)$ is the cost of the cheapest super-hedging strategy of the derivative f(X, Y) by

- Static trading on the European options with maturities 1 and
 2, represented by (φ, ψ)
- Dynamic trading on the underlying asset S, represented by h

Cheapest super-hedging because:

- Cheapest initial cost: inf $\int \varphi(x)\mu(dx) + \int \psi(y)\mu(dy)$
- Super-hedging: $\varphi(x) + \psi(y) + h(x)(y-x) \ge f(x,y)$

・ロト ・回ト ・ヨト

[Beiglboeck(2013)]

No duality gap:

If f is upper semi-continuous with linear growth, then there is no duality gap, i.e.

$$\sup_{Q\in\mathcal{M}(\mu,\nu)}\mathbb{E}^{Q}[f(X,Y)] = \inf_{(\varphi,\psi,h)\in\overline{\mathcal{H}}}\mu(\varphi) + \nu(\psi)$$

Moreover, the supremum is attained, i.e. there exists a maximizing martingale measure.

$$\exists \mathbb{P}_{\star}, \ \sup_{Q \in \mathcal{M}(\mu,
u)} \mathbb{E}^{Q}[f(X, Y)] = \mathbb{E}^{\mathbb{P}_{\star}}[f(X, Y)]$$

(日) (同) (E) (E) (E)

Martingale optimal transport problem

Examples of optimal martingale transports

Extremal points: motivation

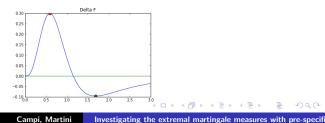
Douglas theorem and the WEP

Characterizing the support of extremal points (countable case)

Hypotheses.

- 1. μ, ν have positive densities p_{μ}, p_{ν} such that $\mu \leq \nu$ and $\int_{0}^{\infty} x p_{\mu}(x) = \int_{0}^{\infty} x p_{\nu}(x) = 1.$
- 2. Denote $\delta F = F_{\nu} F_{\mu}$. Suppose that δF has a SINGLE LOCAL MAXIMIZER *m*.

Similarly: $G_{\mu}(x) = \int_{0}^{x} y \mu(dy), G_{\nu}(x) = \int_{0}^{x} y \nu(dy), \ \delta G = G_{\nu} - G_{\mu}.$



[Hobson and Klimmek(2013)]

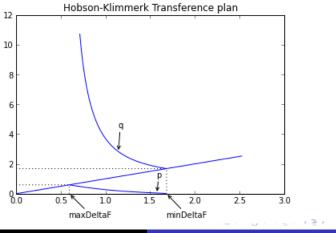
Derive explicit expressions for the coupling giving a model-free sub-replicating price of a at-the-money forward start straddle of type II C¹_{II}:

$$C^1_{II}(x,y) = |y-x|, \quad \forall x, y > 0,$$

► The optimal martingale transport is concentrated on a three point transition graph {p(x), x, q(x)} where p and q are two decreasing functions.

$$\mathbb{P}_{\star}(Y \in \{p(X), X, q(X)\}) = 1$$

[Hobson and Klimmek(2013)]



Campi, Martini

Investigating the extremal martingale measures with pre-specifi

æ

[Beiglböck and Juillet(2012)]

- Introduce the concept of *left-monotone* and *right-monotone* transference plans and prove its existence and uniqueness.
- Show that these transference plan realise the optimum in the martingale optimal transport problem, for a certain class of payoffs:
 - *f*(*x*, *y*) = *h*(*x* − *y*) where *h* is a differentiable function whose derivative is strictly convex.
 - f(x, y) = Ψ(x)φ(y) where Ψ is a non-negative decreasing function and φ a non-negative strictly concave function.
- Existence result only: no explicit characterization of the optimal measure.

[Henry-Labordère and Touzi(2013)]

Extend the results of [Beiglböck and Juillet(2012)] to a wider set of payoffs:

$$f_{xyy} > 0$$

This set contains the coupling treated in [Beiglböck and Juillet(2012)] (f(x, y) = h(x - y) and $f(x, y) = \Psi(x)\phi(y)$).

 Give explicit construction of the optimal measure, which are of left-monotone transference plan type.

イロト 不得 とくき とくき とうき

Definition

Basic left-monotone transference plan (x_*, L_d, L_u) , where $x_* \in \mathbb{R}^*_+$ and L_d, L_u are positive continuous functions on $]0, \infty[:$

i)
$$L_d(x) = L_u(x) = x$$
, for $x \le x_*$;

ii)
$$L_d(x) < x < L_u(x)$$
, for $x > x_*$;

iii) on the interval $]x_{\star}, \infty[$, L_d is decreasing, L_u is increasing;

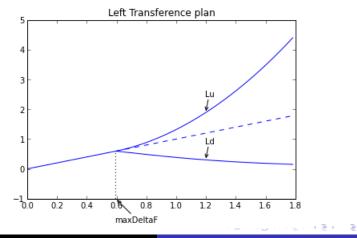
iv) $\mathcal{L}\mu = \nu$ where the transition kernel \mathcal{L} is defined by

$$\mathcal{L}(x, dy) = \delta_x \mathbb{1}_{x \leq x_\star} + (q(x)\delta_{L_u(x)} + (1 - q(x))\delta_{L_d(x)})\mathbb{1}_{x > x_\star}$$

where $q_L(x) := \frac{x - L_d(x)}{L_u(x) - L_d(x)}$.

소리가 소문가 소문가 소문가

Basic left-monotone transference plan (x_{\star}, L_d, L_u)



Campi, Martini Investigating the extremal martingale measures with pre-specif

Basic right monotone transference plan

Basic right-monotone transference plan (x^*, R_d, R_u) , where

 $x_{\star} \in \mathbb{R}^{*}_{+}$ and R_{d}, R_{u} are positive continuous functions on $]0,\infty[:$

i)
$$R_d(x) = R_u(x) = x$$
, for $x \ge x_{\star}$;

ii)
$$R_d(x) < x < R_u(x)$$
, for $x < x_\star$;

iii) On the interval $]0, x_{\star}[$, R_d is increasing, R_u is decreasing,

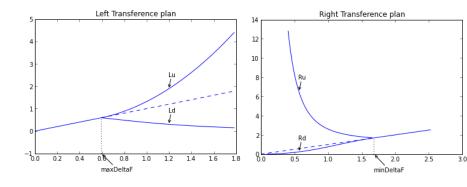
iv) $\mathcal{L}\mu = \nu$ where the transition kernel \mathcal{L} is defined by

$$\mathcal{L}(x,dy) = \delta_x \mathbb{1}_{x \leq x\star} + (q(x)\delta_{R_u(x)} + (1-q(x))\delta_{R_d(x)})\mathbb{1}_{x > x\star}$$

where $q_L(x) := \frac{x - R_d(x)}{R_u(x) - R_d(x)}$.

소리가 소문가 소문가 소문가

Basic right monotone transference plan



Campi, Martini Investigating the extremal martingale measures with pre-specif

イロト イヨト イヨト イヨト

[Hobson and Klimmek(2013)] transference plan $\mathbb{Q}_{HK}(\mu, \nu)$

Type II forward start option: C(X, Y) = |Y - X|. [Hobson and Klimmek(2013)] prove that

$$\inf_{Q \in \mathcal{M}(\mu,\nu)} \mathbb{E}^{Q} \left[|Y - X| \right] = \mathbb{E}^{\mathbb{Q}_{HK}(\mu,\nu)} \left[|Y - X| \right]$$

► The measure Q_{HK}(μ, ν) is an extremal point of M(μ, ν) (by considering the support and the construction of Q_{HK}(μ, ν)).

소리가 소문가 소문가 소문가

F-Increasing transference plan (Laachir I., 2014)

A pair of functions (I, m) is a *F*-increasing transference plan if the following conditions are fulfilled

1. *I* and *m* are increasing.

2.
$$l(x) < x < m(x)$$
 for all $x > 0$.

3.
$$I(0) = 0$$
, $\lim_{\infty} I(x) = z_F^*$ and $m(0) = z_F^*$ (zero of δF).

4.
$$\mathcal{L}\mu = \nu$$
, where the transition kernel \mathcal{L} is defined by
 $\mathcal{L}(x, dy) = q(x)\delta_{l(x)} + (1 - q(x))\delta_{m(x)}$ where
 $q_L(x) := \frac{m(x) - x}{m(x) - l(x)}.$

Rmk: z_F^{\star} zero of the function $\delta F := F_{\nu} - F_{\mu}$

Existence

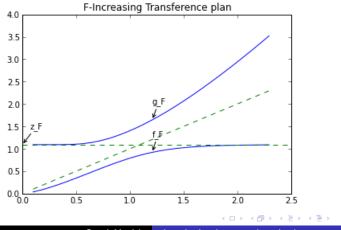
Proposition

The F-increasing transference (I, m) exists and it is unique. For every x > 0, (I(x), m(x)) is the unique solution of the system of equations

$$F_{\nu}(m(x)) + F_{\nu}(l(x)) - F_{\nu}(z_{F}^{\star}) = F_{\mu}(x)$$

$$G_{\nu}(m(x)) + G_{\nu}(l(x)) - G_{\nu}(z_{F}^{\star}) = G_{\mu}(x)$$

Illustration



Campi, Martini Investigating the extremal martingale measures with pre-specif

æ

Martingale optimal transport problem

Examples of optimal martingale transports

Extremal points: motivation

Douglas theorem and the WEP

Characterizing the support of extremal points (countable case)

Extremal Points

- Very few explicit transference plans are known
- They are all extremal points of M(μ, ν) (consider the support for 2 points plans) and share a common structure
- ► The convex set M(µ, ν) is weakly compact and metrizable. By the Choquet representation theorem, any Q ∈ M(µ, ν) satisfies

$$Q = \int Q_{\alpha} d\mu(\alpha)$$

for some probability measure on the extremal points Q_{α} . (e.g.: the Black-Scholes case)

Martingale optimal transport problem

Examples of optimal martingale transports

Extremal points: motivation

Douglas theorem and the WEP

Characterizing the support of extremal points (countable case)

Douglas and the WEP

Theorem

$${\it Q}\in {\it M}(\mu,
u)$$
 is extremal if and only if the set

$$\left\{\varphi(x)-\psi(y)+h(x)(y-x)\backslash(\varphi,\psi,h)\in L^{1}(\mu)\times L^{1}(\nu)\times L^{1}(x\mu)\right\}$$

is dense in $L^1(Q)$.

Definition (WEP)

 ${\it Q}\in {\it M}(\mu,
u)$ has the Weak Exact PRP iff

 $\forall f \in L^1(Q), \exists (\varphi, \psi, h) \text{ s.t. } f(x, y) = \varphi(x) - \psi(y) + h(x)(y - x) \text{ a.s.}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Some consequences of Douglas theorem

Proposition

$$Q$$
 is extremal in $M(\mu, \nu)$ iff for any
 $Q' \in M(\mu, \nu) \ Q' << Q \implies Q' = Q.$

イロン 不同と 不同と 不同と

WEP and the Poisson Equation, 1

WEP is certainly a very strong property. As an illustration, consider the case where for every $x, x \in suppQ(x, .)$. If f is such that f(x, x) = 0, y setting x = y we get that $\phi = \psi$. Then: Proposition

- ψ solves the Poisson Equation (I − Q(x, .))ψ = v where
 v(x) = Q(x, .)f(x.)(x)
- ► the potential kernel G(x,.) applied to v is finite, and ψ(x) = G(x,.)v(x) + Q(x,.)[∞]ψ(x) where Q(x,.)[∞]ψ is a Q(x,.) invariant function.

WEP and the Poisson Equation, 2

In case $Q(x,.) \in M(\mu,\nu)$ has 3 point support with $x \in Q(x,.)$, let $Q^*(x,.)$ the CRR kernel supported on $Q(x, R_+ \setminus \{x\})$.

Proposition

If for any bounded f with f(x,x) = 0, the PE associated to Q^* has a solution with linear growth, then Q has the WEP.

Let ψ such that $(I - Q^*)\psi = Q^*f(x, .)(x)$. Since $Q^*(x, .)$ has 2 points support, $f(x, y) + \psi(y) - \psi(x)$ can be replicated (Q^*) perfectly (CRR) by b(x) + h(x)(y - x). Now b = 0 by taking expectations, so that the WEP holds on the support of Q^* , and therefore everywhere. Application: Hobson Klimmek.

Outline	
Martingale optimal transport problem	
Examples of optimal martingale transports	
Extremal points: motivation	
Douglas theorem and the WEP	
Characterizing the support of extremal points (countable case)	

Martingale optimal transport problem

Examples of optimal martingale transports

Extremal points: motivation

Douglas theorem and the WEP

Characterizing the support of extremal points (countable case)

向下 イヨト イヨト

Basic facts

Let S(x) the support of Q(x, .). Assume the WEP and $\forall x, x \in S(x)$.

Lemma

On S(x), $y \to \psi(y) + f(x, y)$ is affine. In particular $\psi_S(x)$ is fully determined by its values at any 2 points.

Corollary

For distincts $x, x', \ \sharp S(x) \cap S(x') \leq 2$.

NB: if all the sets S(x) are disjoints, then $M(\mu, \nu)$ is a singleton.

The point of interest is the combinatorics of the sets $\sharp S(x) \cap S(x')$

Denny's (non martingale) characterization

Theorem

- *Q* is extremal in $\Pi(\mu, \nu)$ iff
 - $supp(Q) = \{(x, f(x)\} \cup \{(g(y), f(y)\} \text{ for } 2 \text{ functions } f, g\}$
 - ▶ for any n, (g.f)ⁿ has no fixed point

Remark: Dom(f) or Dom(g) can be empty.

・ロト ・回ト ・ヨト ・ヨト

Denny's (and Letac) cycles

- The main idea in Denny's theorem is that it is possible to perturbate Q along a cycle.
- What about the martingale property? It will not be preserved by such a perturbation.

소리가 소문가 소문가 소문가

A martingale perturbation

Assume in the 3 points support case that $\sharp S(x) \cap S(x') = 2$, $\sharp S(x) \cap S(x'') = 2$, $\sharp S(x') \cap S(x') = 1$.

Then we can build a martingale perturbation.

A candidate cycle like property

Consider we start from a given $x \in X$. Set:

1.
$$\Psi_1 = S(x), T_1 = \{x\}$$

2. By recurrence, let $T_{n+1} = \{y \notin T_n / S(y) \cap \Psi_n \neq \emptyset\}$ and set $\Psi_{n+1} = \Psi_n \cup_{T_{n+1}} S(y)$, and for $z \in T_{n+1}$, $\Psi_{n+1}^*(z) = \Psi_n \cup_{T_{n+1} \setminus z} S(y)$ for $n \ge 1$.

Our sufficient condition read, in step 2 above:

$$\forall z \in T_{n+1}, \sharp(S(z) \cap \Psi_{n+1}^*(z)) \leq 2$$

A martingale cycle would be $z \in T_{n+1}, \sharp(S(z) \cap \Psi_{n+1}^*(z)) \geq 3$.

Conclusion

- WEP and sequential WEP from Douglas theorem
- Solving the WEP via the Poisson equation
- A candidate martingale cycle property
- Many questions remain!

Outline	
Martingale optimal transport problem	
Examples of optimal martingale transports	
Extremal points: motivation	
Douglas theorem and the WEP	
Characterizing the support of extremal points (countable case)	

Thank you for your attention !

.⊒ .⊳

M. Beiglböck and N. Juillet.

On a problem of optimal transport under marginal martingale constraints.

arXiv preprint arXiv:1208.1509, 2012.

Penkner Beiglboeck, Henry-Labordère.

Model-independent bounds for option prices - a mass transport approach.

Finance and Stochastics, 17(3):477–501, 2013.

P. Henry-Labordère and N. Touzi.

An explicit martingale version of Brenier's theorem.

Preprint arXiv:1302.4854v1., 2013.

D. Hobson and M. Klimmek.

Robust price bounds for the forward starting straddle.

arXiv preprint arXiv:1304.2141, 2013.

V. Strassen.

The existence of probability measures with given marginals.

Ann. Math. Statist., 36:423-439, 1965.

ISSN 0003-4851.

イロト イポト イヨト イヨト